Détecteurs Semi-conducteurs

Beaucoup d'extraits de l'ancien cours de DEA CPM de **Sylvie Dagoret-Campagne** (LPNHE maintenant au LAL)

Bandes en énergie dans un solide

Les électrons se répartissent dans des bandes en énergie $f(\epsilon) = \frac{1}{\exp(\frac{\epsilon - \mu(T)}{kT}) + 1}$ selon la Loi de Fermi

Liaisons électroniques dans un semiconducteur

Atomes tétravalents: le Germanium et le Silicium

A température non nulle, formation de paires électron/trou par excitation thermique

$$\begin{cases} n = N_c \exp \frac{\epsilon_F - \epsilon_c}{kT} \\ p = N_v \exp \frac{\epsilon_v - \epsilon_F}{kT} \end{cases}$$

$$n_i^2 \equiv np = N_c N_v \exp \frac{-E_g}{kT}$$

 $n_i = 10^{11} / cm^3 a 300 K$

Dopage d'un semi-conducteur

Semi conducteur de type N

Semi conducteur de type P

۲ Trou Atome accepteur Dens (Bore, indium, gallium, aluminium...)

Ζ

Α

Eg

Dopage 10¹³ a 10¹⁶ pour 10^{22} at / cm³ Ge Si unit 32 14 72.6 28.1 5,32 2,33 g/cm2 0.7 1.1 eV 2.96 3,62 eV $E_{e/t}$ °K @300 @77

Niveaux d'énergie dans un semiconducteur dopé

Les atomes donneurs créent un niveau dans le Gap légèrement sous le bas de la bande de donneur est excité dans la bande de conduction

Les atomes accepteurs créent un niveau (vide) dans le Gap légèrement Au dessus de la bande de valence. conduction : résultat l'électron du Un électron de la bande de valence va peupler ce niveau en laissant un trou dans la bande de valence.

La jonction PN

- Diffusion des porteurs majoritaires dans la zone opposée
- Création d'une charge d'espace
- Création d'un courant de conduction

En résolvant l'équation de Poisson:

$$\frac{d^2V}{dx^2} + \frac{\rho(x)}{\epsilon} = 0$$

$$\begin{cases} V_N = -\frac{eN_D}{2\epsilon}(x-x_N)^2 + V_d \\ V_P = \frac{eN_A}{2\epsilon}(x-x_P)^2 \end{cases}$$

$$\begin{cases} x_N = \frac{2\epsilon V_d}{eN_D(1+N_D/N_A)} \\ x_P = \frac{2\epsilon}{eN_A(1+N_A/N_D)} \end{cases}$$

$$d = \sqrt{\frac{2\epsilon V_T}{e} \frac{N_A + N_D}{N_A N_D}}$$

Jonction PN polarisée en mode inverse

Objectif : obtenir une large zone de déplétion

 V_{T} est remplace par V_{T} +V d augmente

Ex. V=300V, d=1mm

Jonction PN+: objectif Obtenir une zone de déplétion de qqs centaines de microns

$$d = -x_P = \sqrt{\frac{2\epsilon V_d}{eN_A}} = \sqrt{2\epsilon\rho_P\mu_t V_d}$$

$$\begin{cases} d(\mu m) = 0, 32\sqrt{\rho_P V_T}; (Si) \\ d(\mu m) = 0, 65\sqrt{\rho_P V_T}; (Ge) \end{cases}$$

Détecteur semi conducteur

Jonction PN polarisée en inverse

Traitement du signal

Principales caractéristiques (1)

« Energy Gap » (séparation bande de valence et conduction)

« Energy to produce a pair e/h »

Silicium

190

Principales caractéristiques (2) du Silicium et Germanium intrinsèque

	Si	Ge
Atomic number	14	32
Atomic weight	28.09	72.60
Stable isotope mass numbers	28-29-30	70-72-73-74-76
Density (300 K) ; g/cm ³	2.33	5.32
Atoms/cm ³	4.96×10^{22}	4.41×10^{22}
Dielectric constant	12	16
Forbidden energy gap (300 K); eV	1.115	0.665
Forbidden energy gap (0 K); eV	1.165	0.746
Intrinsic carrier density (300 K); cm^{-3}	$1.5 imes 10^{10}$	2.4×10^{13}
Intrinsic resistivity (300 K); $\Omega \cdot cm$	2.3×10^{5}	47
Electron mobility (300 K); $cm^2/V \cdot s$	1350	3900
Hole mobility (300 K); $cm^2/V \cdot s$	480	1900
Electron mobility (77 K); $cm^2/V \cdot s$	2.1×10^{4}	3.6×10^{4}
Hole mobility (77 K); $cm^2/V \cdot s$	1.1×10^4	4.2×10^{4}
Energy per electron-hole pair (300 K); eV	3.62	
Energy per electron-hole pair (77 K); eV	3.76	2.96
Fano factor (77 K)	0.143 (Ref. 7)	0.129 (Ref. 9)
	0.084 (Ref. 8)	0.08 (Ref. 10)
	0.085)	< 0.11 (Ref. 11)
	to $\langle (\text{Ref. 12}) \rangle$	0.057) (Def 12)
	0.137	0.064 (Kef. 12)
	0.16 (Ref. 13)	0.058 (Ref. 14)

TABLE 11-1 Properties of Intrinsic Silicon and Germanium

Source: G. Bertolini and A. Coche (eds.), Semiconductor Detectors, Elsevier-North Holland, Amsterdam, 1968, except where noted.

Principales caractéristiques (2)

Forme du signal

- Déplacement des charges dans le champ V = μ .E (électrons <u>et</u> trous)

Remarque : si la densité d'ionisation est élevée, considérer «l'effet plasma»

- Influence sur les électrodes Appliquer le Théorème de Ramo

Utilisation en physique de hautes énergies Mesure de la position

Détecteurs de « Vertex » ou de « Traces »

Silicium de 300 μ m

Particule au Minimum d'ionisation (mip) :

Dans une zone déplétée de 300 µm, un mip dépose une énergie : E=0.03cm x (1.6 MeV/(g/cm2))x(2.33g/cm3)=100 KeV

Sachant qu'il faut **3.6 eV pour libérer une paire électron-trou** dans le silicium, le nombre de paires crées est de : 100 KeV/ 3.6 eV= 25000 paires. (80 paires par micron pour un mip)

Les détecteurs microstrips

Détecteur au Silicium dans Atlas

STC d'ATLAS

Plaquette 6cm x 6 cm 768 micropistes de 20 µm de large Lecture tous les 80 µm Épaisseur 300 µm

Les détecteurs à Pixels

Les détecteurs à dérive

Structure PNP ·Qui produit un puit de potentiel ·Les électrons dérivent vers l'électrode de lecture

en 100 ns à 100 Os.

Fig. 10. the silic

Détecteurs au Silicium Utilisation en physique nucléaire

Mesures d'énergie (Grande dynamique)

Mesures de temps

Mesures de position (Segmentation en pistes)

Identification de noyaux Perte Energie / Energie Energie / Temps de vol Forme d'impulsion

The **INUST2** Array

Collaboration: IPNO,SPhN/Saclay,GANIL

The **INUST2** Array

Collaboration: IPNO,SPhN/Saclay,GANIL

Coefficients d'atténuation dans le Germanium

Détecteur de grand volume

Extrait du livre de Knoll

Extrait du livre de Knoll

Forme d'impulsion (en charge) pour différents points d'interaction

Détecteur planaire

Extrait du livre de Knoll (Modèle simplifié)

Forme d'impulsion (en charge) pour différents points d'interaction

Détecteur coaxial

Extrait du livre de Knoll (Modèle simplifié)

Arrays from TESSA0 to AGATA

EUROGAM

TESSA

GaSp

EUROBALL III

EUROBALL IV

Idea of y-ray tracking

large opening angle means poor energy resolution at high recoil velocity

too many detectors are needed to avoid summing effects

Combination of:

segmented detectors
digital electronics
pulse processing
tracking the γ-rays